Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features.
نویسندگان
چکیده
In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks when compared to the previous one. Specifically, at 60%, 65%, and 70% per-mammogram sensitivity, the new CAD system achieves 0.50, 0.68, and 0.92 FP marks per mammogram, whereas at 70%, 75%, and 80% per-case sensitivity it achieves 0.37, 0.48, and 0.71 FP marks per mammogram, respectively. Conversely, at the same sensitivities, the previous CAD system reached 0.71, 0.87, and 1.15 FP marks per mammogram, and 0.57, 0.73, and 0.92 FPs per mammogram. Also, statistical significance of the difference between the two per-mammogram and per-case FROC curves is demonstrated by the p-value < 0.001 returned by jackknife FROC analysis performed on the two CAD systems.
منابع مشابه
Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms.
In this paper, a new and novel approach is designed for extracting local binary pattern (LBP) texture features from the computer-identified mass regions, aiming to reduce false-positive (FP) detection in a computerized mass detection framework. The proposed texture feature, the so-called multiresolution LBP feature, is well able to characterize the regional texture patterns of core and margin r...
متن کاملTexture classification using invariant ranklet features
A novel invariant texture classification method is proposed. Invariance to linear/nonlinear monotonic gray-scale transformations is achieved by submitting the image under study to the ranklet transform, an image processing technique relying on the analysis of the relative rank of pixels rather than on their gray-scale value. Some texture features are then extracted from the ranklet images resul...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملComputerize classification of Benign and malignant thyroid nodules by ultrasound imaging
Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...
متن کاملJoint Analysis of Multiple Mammographic Views in CAD Systems for Breast Cancer Detection
In screening X-ray mammography two different views are captured of both breasts. In the four X-ray images some special signs of cancer (mainly microcalcifications and masses) are looked for. In computer-aided cancer detection the first step is to analyse the individual images. However, as breast cancer detection using X-ray mammography is an ill-defined problem, obtaining high hit rate while ke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2009